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Graphs for Genealogists
The future is faster than you think!
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An invitation …

Volunteer: https://wai.md/gfg

https://wai.md/gfg
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Collaborators

• Wesley Johnston
 DNA Coverage
 User’s Guide

• Weidong Yang
 GraphXR: 3D visualizations
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 In common with report
 GDS Bug - Change in neo4j.conf files 

• Michelle Wilson
 Endogamy analytics and  reporting

• Ian Logan
 mt-haplotree 

• Tim Janzen 
 Mennonite Project endogamy reporting

• Philip Gasaatura
 Rwanda oral history project
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Thinking in Graphs

Leonhard Euler (1707-1783)

Euler is the “father of graph theory” who 
originally found the bridges of in Königsberg 
problem too trivial for his attention. 

The question was: can you cross each of the 
seven bridges only once?

Replaced a brute force solution with a graph.

A

B D

C
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What we’ll cover

• The GFG Strategy
• “Thinking in Graphs” Get ready to be amazed
• Why graph methods? Bigger, better, faster
• If graphs, how?  The strategy
• Making it feasible 
 Enabling software 
 Professor’s Rounds

• What does it do?  Seeing is believing.
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The GFG Strategy

• Align with interests and skills of genealogists
• Use available data
• Tools to do the heavy lifting
• Enhance extant analytic reporting
• Expand the analytic repertoire
• Make it open source; encourage collaboration
• Modular design for numerous graphs
• Support interoperability with 3rd party tools
• Develop standards for genealogy graphs



8

Feasibility

• Graph database technology is mature
• Genealogy graph resources are available
• Thought leaders are aware
• >100 downloads of GFG software
• First server-based deployments in progress
• Mentoring program in place
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GFG: Making the Complex Simple
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Why Graph Methods?

• Queries are intuitive
• Big data is manageable
• Little change in performance as data added
• Graph traversals outperform iterations

• Enhancements create knowledge
• Knowledge graphs enable discovery
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Thinking in Graphs

David Allen Stumpf

Dorothy Frances
Davis

Frances Emma
Green

Arminda Ann Erwin
Will iam Ewing

Green

Aubrey Milton Davis

Laura Voden AvittsGeorge Schuyler
Davis

Herman Allen
Slumpff

Baudina Hillena
Teves

Martje Geerts
Schuttinga

Jan Teves Teves

Ale Harmens Slump

Pietje KoenenHarmen Jans Slump

match path=(p:Person{RN:1})-[r:father|mother*0..3]->(a:Person) return path

Persons as Nodes
Father & mother as Relationships
Family tree as Paths
Each can have Properties
Intuitive cypher query

() = node
[] = relationship
{} = property
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Family Tree Functions

• Patrilineal trees
• Matrilineal trees
• X-inheritance trees
• Double cousins
• Relationships of all in the project
• X-genetic distance for all
• Pedigree completeness
• Correlation of relationship
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Haplotrees

• FTDNA 
 Y-haplotree
 Mt-haplotree

• Analytics
 Inferred haplogroup => knowledge
 Clade-mates
 Dual matches: at- and either Y- or mt-matches

• Display
 ORDPATH
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Graphs as Adjacency Matrices
… when big data is overwhelming

DNA Matches = sparse matrix
Great for limited set of close matches
Quickly become non-computable
Graph methods handle 250,000 matches

Avoids a 62 trillion cell matrix!
Performs well

0 2 0 1
2 0 2 1
0 2 0 1
1 1 1 0

A

B D

C

The N2 problem
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Thinking in Graphs
Avoid a common trap

• If you’ve worked with relational databases
 Nodes ≅ tables
 Relationships ≅ joins
 Properties ≅ table fields

• Don’t do this! 
 It’s a simplification that is not robust
 It diverts you from thinking differently

• Graphs have new first-class citizens
 Relationships are more robust than joins
 Path and List data types are not in relational systems

• Graphs are a unique ecosystem

NoSQL databases are NOT native graph databases
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New Ways of Thinking

• Can I relate these two graphs?
• What properties should the relationship have?
• How do I speed up traversal queries?
• Can I create a new perspective? Union tree?
• What can I do with traversal collected data?
• How do I manage provenance of data?
• How do I leverage graph specific capabilities?
• How can I enhance the knowledge graph?
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Think in Path Traversals

• Query uses an index to find start node(s)
• Traverses from start through relationships 
• Several methods for collecting data as Lists

• Graphs have data types
 Node
 Relationship
 Path
 List

Each can have properties 
which can be indexed 



18

Ahnentafel from traversal data
Collecting 1’s and 0’s

match path=(n:Person{RN:27})-[r:father|mother*0..2]->(x)
with x.fullname as Name,'1' + reduce(srt ='', q IN nodes(path)|srt + case when
q.sex='M' then '0' else '1' end ) AS Anh
with Name, '1' + right(Anh,size(Anh)-2) as Ahnen
return Name,Ahnen as Ahen_base_2 , gen.rel.ahnentafel(Ahnen) as Ahnentafe
l order by Ahnentafel

Name Ahen_baseAhnentafe
Anderson 1 1
William H  10 2
Tabitha Br 11 3
John Dem  100 4
Nancy McG 101 5
Joshua H. 110 6
Rebecca Li  111 7
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Triple magic
Adding record numbers and sex

Name gen sex_path Ahnentafel Dewey ORDPATH
Martha Elizabeth Stinnett [32] (1843-1928) 0 F 1 [32] 1018
Samuel Lewis Stinnett [63] (1822-1864) 1 FM 2 [32,63] 101810127
Alpha Loggins [64] (1823-1906) 1 FF 3 [32,64] 101810128
Mary Elizabeth Nichols [101] (1785-1855) 2 FMF 5 [32,63,101] 1018101271100d
Samuel Loggins [102] (1776-1826) 2 FFM 6 [32,64,102] 1018101281100e
Martha Scott [103] (1795-1880) 2 FFF 7 [32,64,103] 1018101281100f
William Nichols [130] (1754-1850) 3 FMFM 10 [32,63,101,130] 1018101271100d11002a
Nancy Blankenship [131] (1765-1850) 3 FMFF 11 [32,63,101,131] 1018101271100d11002b

• X-chromosome ancestors of Martha Elizabeth Stinnett
• Sex path excludes male to male inheritance
• Dewey is an aggregation of record  numbers of persons in he path
• ORDPATH a hexadecimal number created from the Dewey by a UDF
• Notice that sorting on the Dewey will not order the list properly
• Sorting on ORDPATH provides a proper sort
• SQL Server hierarchyId datatype is an ORDPATH string

O’Neil, P. et al. ORDPATHs: insert-friendly XML node labels. in Proceedings 
of the 2004 ACM SIGMOD international conference on Management of 
data 903–908 (Association for Computing Machinery, 2004). 
https://www.cs.umb.edu/~poneil/ordpath.pdf
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Common ancestors
… bread and butter graph task

match (p1:Person{RN:1})-
[r1:father|mother*0..15]->(mrca:Person)<-[r2:father|mother*0..15]-
(p2:Person{RN:600})
return collect(mrca.fullname) as mrca

• Pictured pedigree: Query returns grandparents
• Two paths converge on MRCA(s)
• Three variables define a relationship

• Path length 1
• Path length 2
• MRCA count

• Represent as concatenated string
• Pictured  2:2:2 = 1C
• 2:2:1 = H1C
• 4:5:1 = H3C1R

• fam_rel node set also includes 
Shared Centimorgan Project data

There are many GFG functions for common ancestors
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Easier to see in a graph

My 3G grandfather married sisters

His descendant is both my 5C and H4C, 
sharing 3 MRCAs in two different 
generations.

5:5:1 = H4C
6:6:2 =   5C

The sisters’ children are ¾ siblings
1

2

5

4

3

6 6
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Correlation of Relationship
… a number with added value

• Single value
• Detailed view
 Count hops on each path and do the math
 Estimate or look up the expected shared cM

propositi  relationship  ancestors path1  path2  genetic_distance  COR
David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )  H5C  Rebecca Libby McMican 4607 (1790-1863) 6 6 12 .0002441
David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )  H5C  Joshua H. Brown 4441 (1780-1840) 6 6 12 .0002441
David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )  H4C  William H. Averatts 53 (1813-2022) 5 5 10 .0009766

The total COR is 0.00146484375
From the shared centimorgan project the expected value and range is unknown cm.
The observed shared DNA is 82.9.
The predicted DNA is 0.00146484375 x 6000 = 8.7890625 cm

UDF:
return gen.rel.shared_DNA(1,26429)

The coefficient of relationship (COR) is a measure of pedigree collapse resulting from ancstors appearing more that one in the family tree.
The paths are the generations to the common ancestor for each person in the analysis.

references:
https://www.yourdnaguide.com/ydgblog/2019/7/26/pedigree-collapse-and-genetic-relationships
http://www.genetic-genealogy.co.uk/Toc115570135.html
https://isogg.org/wiki/Coefficient_of_relationship
database: avitts

COR, if available, can be a better filter than relationship or centimorgans.


cor-4

		propositi		relationship		ancestors		path1		path2		genetic_distance		COR		observed_cm		expected_cm

		David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )		H5C		Rebecca Libby McMican 4607 (1790-1863)		6		6		12		0.0002441

		David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )		H5C		Joshua H. Brown 4441 (1780-1840)		6		6		12		0.0002441

		David Allen Stumpf 1 (1945- ) ; anonymized 26429 ( - )		H4C		William H. Averatts 53 (1813-2022)		5		5		10		0.0009766

		The total COR is 0.00146484375

		From the shared centimorgan project the expected value and range is unknown cm.

		The observed shared DNA is 82.9.

		The predicted DNA is 0.00146484375 x 6000 = 8.7890625 cm

		UDF:

		return gen.rel.shared_DNA(1,26429)

		The coefficient of relationship (COR) is a measure of pedigree collapse resulting from ancstors appearing more that one in the family tree.

		The paths are the generations to the common ancestor for each person in the analysis.

		references:

		https://www.yourdnaguide.com/ydgblog/2019/7/26/pedigree-collapse-and-genetic-relationships

		http://www.genetic-genealogy.co.uk/Toc115570135.html

		https://isogg.org/wiki/Coefficient_of_relationship

		database: avitts
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What’s going on?
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Sticky segments?
Selection bias?
Something else?

The illusion of linearity is 
exposed in a log-log plot

Is segregation really random?
Are there outliers?

Mother Nature and “Thinking in Graphs” offer some possible explanations.
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Pedigree Collapse

• Duplicate ancestors 
• Multiple positions in a standard pedigree chart
• Multiple paths
• Coefficient of inbreeding
 Most recent endogamous ancestor
 COR of MREA halved for each 

descendant generation

4

2096

12

19

1050

1069

1799

2058

2062

2082

1068

1067

2165

2178

2166

2376

2379

2382

1077

2168

2195

2411

2544

2167

2194

2214

2279

2564

COR = 0.008
COI = 0.004

COI= 0.001
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Graph Topology
Paths in Endogamy

• Paths are first-class citizens in a graph database
• GFG creates path nodes and relationship to them
• Path have intersections
• GFG creates intersect nodes and path-intersect relationships
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https://www.wai.md/blog/categories/endogamy



26

Getting Started

• Explore the GFG Blog
• Join the FB GFG Forum
• Wes Johnston’s Guide to Getting Started with GFG
• Download GFG Software
• Install Neo4j Software
• Mentoring at Professor’s Rounds

https://www.wai.md/blog
https://www.facebook.com/groups/gfgforum
https://blobswai.blob.core.windows.net/gfg-blog/Wesley_Johnston_Guide_to_Getting_Started_with_Graphs_for_Genealogists_2023.pdf
https://www.wai.md/product-page/gfg-software
https://neo4j.com/download-neo4j-now/
https://us02web.zoom.us/meeting/register/tZUtfu-opz8jE9c92BaH5UBnoDUL_0MSpH9y
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Neo4j

• “Native” Graph Database
• Industry leader
• Open Source 
• Free versions
• PlugIn functions and procedures
 From Neo4j: 

• APOC: awesome procedures on cypher 
• GDS: graph and machine learning algorithms

 GFG capitalizes on these, adding ~200 functions

https://neo4j.com/labs/apoc/
https://neo4j.com/product/graph-data-science/
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The GFG Neo4j PlugIn
~200 functions

• Loads GEDCOM and FTDNA data files
• Uses curated files to link graphs
• Loads reference data
• Generates reports
• Uses Neo4j PlugIns
• Memorializes analytics => knowledge graph
• Optimized schema => perhaps a standard?
• Incremental learning for users
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Curation by the Genealogist
Linking the family tree to the DNA

Curation File
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GEDCOM-DNA curation file
linkages plus research nodes

• Links your GEDCOM to the FTDNA kit
• Match name is from the file in which the person is a match
• Curated_RN is the GEDCOM number: 0 @I5678@ INDI
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Example Project
My Avitts/Brown line

• Persons: 34,601
• Unions: 12,527
• Kits: 54
• DNA_Matches: 251,553
• Segments: 434,025
• Avatars: 41
• Family paths: 406
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French-Canadian Project
… with Michelle Bray Wilson

• Persons: 2,822
• Unions: 1,369
• Kits: 12
• DNA Matches: 27,476
• Segments: 47.776
• Avatars: 0
• Family paths: 1,797 

with 2,337 intersections
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Mennonite Project

• Persons: 1,503,531
• Unions: 482,742
• Kits: 1 (test sample)
• DNA Matches: 921
• Segments: 3403
• Family paths: 21,764,710
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Workflow
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Knowledge Graph

• Turning facts into actionable insights
• Analytic results memorialized in the graph
• Iterative process: knowledge builds more
• One-time effort => any time benefit
• “Cost” is more storage space
• Benefit is faster, better queries

Advanced analytics require an optimized knowledge graph!
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Key Knowledge

Provenance of data
Match-Pair names & RN
Their relationship
Their COR
Genetic distance
Parental side for both
MRCAs
cM
SNP count
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at-haplotree
…family tree matches  segments

Resembing
ThruLines®
Theories of Relationship®
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Cluster match circle
… DNA_Match nodes  linked by match_by_segment 

All but one match has a 
record number.

The unknown match 
(red arrow) has many 
relationships, providing 
a motive for additional 
research.
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Field of Dreams: Avatars
… in silico reconstruction of ancestors

• Your ancestor emerges from the corn field
• DNA available for your research
• Quick and easy in a graph database

https://www.wai.md/post/the-field-of-dreams-ancestor-avatars
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Knowledge Graph 
… enables amazing advanced analytics 

• match_segment 
relationships
 GFG adds knowledge

• parental origin of segment
• Relationship between 

match-pair
• MRCAs

Avatar creation is enabled by the knowledge.
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Assigning segments with parental side

• match path=(p1:Person{RN:210})-[r1:father|mother*0..6]-
>(mrca:Person)<-[r2:father|mother*0..6]-(p2:Person{RN:582}) return path

Diane Elizabeth
StumpfMichael Anne

Dexter

Dorothy Frances
Davis

Aubrey Milton Davis

George Schuyler
Davis

Will ie Mae Davis

Richard Osborn
Dexter

Laura Voden Avitts

direct

collateral
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Inferred Segments
Assigning a grandparent’s segment

• Inferred segments when segments overlap

1
06

169141
170919470

06
169141

22491413

209

06
14131804
21142478

26313 Find base and close relation 
using cor ⪖0.25

Find compare relative who 
matches base and close 
cor ⪖ >0.00125

Identify segments shared with 
compare relative and compute 
flanking regions that are not 
shared.

Assign the flanking regions to 
the grandparent who is NOT in 
the shared family line. 

https://familytreewebinars.com/webinar/inferred-mapping-explained/

O
ne

 q
ue

ry
 d

oe
s i

t a
ll!

https://familytreewebinars.com/webinar/inferred-mapping-explained/
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Anderson Avitts (1843-1877)

• Details at blog post
https://www.wai.md/post/the-field-of-dreams-ancestor-avatars

https://www.wai.md/post/the-field-of-dreams-ancestor-avatars
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The Field of Dreams
What your ancestor and relative avatars tll you

• Avatars have family trees
• Avatar match their descendants
• Avatars define crisp triangulation groups
• Avatars match a few not in the family tree … yet
• Avatars illuminate autosomal haplotrees
 Avatar segments are linked to their source
 Descendants know the ancestral origin of segments
 Segment “checkerboard” enhances analytic specificity

• Relative avatars segments: help place new matches?
• Inferred segments help with tangential line research



45

Graph Algorithms

GFG uses Neo4j Graph Data 
Science Plug-In and its 
community detection algorithms
Louvain

Modularity optimization
Page Propagation

Community members align with 
family tree branches.

Community segments identified.

GFG queues up query for …
DNA Painter
GraphXR (3D renderings)
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What’s Next
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Many Opportunities

• Machine Learning
• Y-DNA analytics
• mt-DNA analytics
• FAN groups
• Spatial analytics
• Automated 3rd party interfaces
• 3-D renderings
• Virtual reality
• Forensic graphs
• Evidence graphs
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Knowledge Graph Enhancements
… driven by user engagement

• Avatars on many family lines
• mt-haplotree enhancements
• Improved surname linkages
• FAN Groups capabilities
• Other vendor DNA results
•
•
•
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Ancestral surname reports
… 3 worksheets

• Matches with the surnames
 Match
 Source kit
 Shared cm and segment count

• In-common-with matches
 Match
 Cluster of icw matches
 MRCAs of the cluster of matches, if identifiable

• Shared segments
 Matches at segments (usually a short list)

CALVERT,KENT
CALVERT,KENT,STINNETT
CALVERT,KENT,STINNETT
CALVERT,KENT
KENT,STINNETT
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FAN Groups from 1850 Census
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“Four generations of uncles”
Sabanno, Eastland Co., Texas about 1917

1. Stinnett, Samuel Henry [679] (1854-1928)  M
2. Erwin, James Samuel [283] (1861-1949)  M
3. Green, Chester Erwin [243] (1889-1949)  M
4. Green, William Alvord [422] (1916-2008)  M

Also, 1917 Stevens touring car?
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FAN Group from Multiple Sources

Capture and preserve the knowledge
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Painted segments
… UDFs generate query for DNA Painter 
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Forensic Genealogy
… violent crimes, missing persons, abandoned bodies, etc.

Alphonse
Capone

Gabriele
Capone

1

Frank
Capone

TraffickersPimp 1

Boss Joe

Proj4 murder

Unknown

Unknown

Uncle
John

Cousin
Susan

Jim Crow

Jim Crow

Suzy
Draper

Mother
Holland

Blue
Dahlia

John
Ripper

John
Ripper

Semen at
Crime

Susan
Cooper

Cousin
Ripper

Mother
Holland

Suzy
Draper

2

Mother
Ripper

Grandma
Ripper

Aunt
Ripper

Jennifer
Holland

3

Proj1

Detective
Rogers

Missing
Persons
Team

James
Smith

Sgt
Mitchell

Officer
Davis

Team2

Alice
Wonder…

Homocide
Team 1

Homocide
Team 2

Mickie
Jones

Abel
Prosect…Sgt

McClure

Vice
Detective
Phill ipsVice Team

Proj3 Proj6

Proj5

Chicago
Outfit

John
Scalise

Current GFG schema

Forensic enhancements
LE social networks
LE Cases 
Crime site evidence
Suspects
Forensic repositories

An opportunity for 
forensic genetic 
genealogists!

Let’s discuss: https://wai.md/gfg

https://wai.md/gfg
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A Good Place to End
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David A Stumpf, MD, PhD
dave@wai.md

https://wai.md/gfg
https://facebook.com/groups/gfgforum

mailto:dave@wai.md
https://wai.md/gfg
https://facebook.com/groups/gfgforum
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