

Graphs for Genealogists David A Stumpf, MD, PhD dave@wai.md

Graphs for Genealogists The future is faster than you think!

An invitation ...

How to Get Involved

An invitation to help build the future of genealogy graph analytics.

Testers

GFG needs testers to shake down new features and provide feedback. You'll get an inside track to the latest features and help influence improvements and new features. To volunteer send us an email. <u>info@wai.md</u>

Advocates

GFG encourages thought leaders to learn about its capabilities and write reviews for their constituency. To request a demonstration or interview send us an email. <u>info@wai.md</u>

Developers

GFG is an open source project with modular components. Plug-Ins are coded in Java. If you'd like help design, build or manage new capabilities send us an email. <u>info@wai.md</u>

Innovators

Have an idea? GFG can help you explore its feasibility and develop a plan. There are many opportunities for entrepreneurs using graphs in genealogy. We'd like to help expand the innovation community. <u>info@wai.md</u>

Collaborators

Would you like to incorporate graph capabilities into your products? GFG can help. DNA analytics, forensic genealogy, document and image management have significant opportunities. info@wai.md

Meeting Planners

GFG can provider speakers or workshop leaders who bring graph thinking and methods to your meeting, <u>info@wai.md</u>

Volunteer: https://wai.md/gfg

Collaborators

- Wesley Johnston
 - DNA Coverage
 - User's Guide
- Weidong Yang
 - GraphXR: 3D visualizations
- Peter Cunningham
 - In common with report
 - GDS Bug Change in neo4j.conf files
- Michelle Wilson
 - Endogamy analytics and reporting
- Ian Logan
 - mt-haplotree
- Tim Janzen
 - Mennonite Project endogamy reporting
- Philip Gasaatura
 - Rwanda oral history project

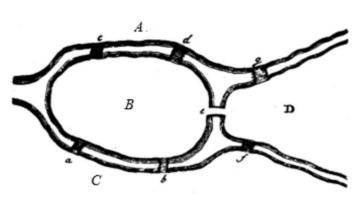
Acknowledgements

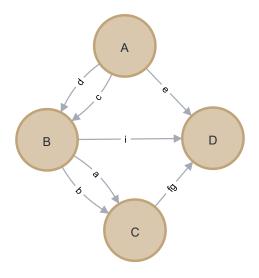
Open Source means it's readily available.

But copyrights still apply so that appropriate use can be managed.

The work described here involve assets from a number of sources whose prior work is appropriately used with permission. My thanks to them!

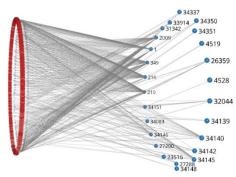
Thinking in Graphs




Leonhard Euler (1707-1783)

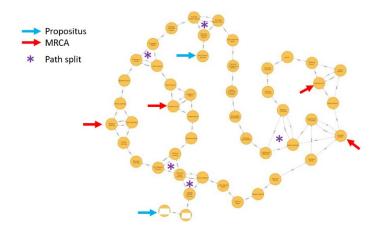
Euler is the "father of graph theory" who originally found the bridges of in Königsberg problem too trivial for his attention.

The question was: can you cross each of the seven bridges only once?


Replaced a brute force solution with a graph.

What we'll cover

- The GFG Strategy
- "Thinking in Graphs" Get ready to be amazed
- Why graph methods? Bigger, better, faster
- If graphs, how? The strategy
- Making it feasible
 - Enabling software
 - Professor's Rounds
- What does it do? Seeing is believing.



The GFG Strategy

- Align with interests and skills of genealogists
- Use available data
- Tools to do the heavy lifting
- Enhance extant analytic reporting
- Expand the analytic repertoire
- Make it open source; encourage collaboration
- Modular design for numerous graphs
- Support interoperability with 3rd party tools
- Develop standards for genealogy graphs

Feasibility

- Graph database technology is mature
- Genealogy graph resources are available
- Thought leaders are aware
- >100 downloads of GFG software
- First server-based deployments in progress
- Mentoring program in place

GFG: Making the Complex Simple

match (s1:Segment) with s1 order by s1.chr,s1.strt pos,s1.end pos with collect(distinct s1) as segs1 match (m1:DNA Match)-[r1:match segment]-(s2:Segment) where s2 in segs1 and r1.cm>=7 and r1.snp ct>=500 and r1.p_anc_rn is not null and r1.m_anc_rn is not null with r1.p anc rn as anc rn, case when m1.RN>0 then '*' + m1.fullname + ' [' + m1.RN + ']' else m1.fullname end as m2, case when m1.RN>0 then m1.RN else null end as rns1, case when r1.m rn>0 then r1.m rn else null end as rns2, case when r1.m rn>0 then '*' + r1.m + ' [' + r1.m rn + ']' else r1.m end as m3, max(r1.cm) as max cm,min(r1.cm) as min cm, s2,count(r1) as edgect, sum(case when r1.p=m1.fullname then 1 else 0 end) as unidir ct p, sum(case when r1.m=m1.fullname then 1 else 0 end) as unidir ct m with anc rn,s2,min cm,max cm, apoc.coll.union(collect (distinct m2), collect(distinct m3)) as matches, apoc.coll.union(collect(distinct rns1),collect(distinct(rns2))) as rns, sum(edgect) as edgect, sum(unidir ct m) as unidir ct m, sum(unidir ct p) as unidir ct p order by s2.chr, s2.strt pos, s2.end pos with anc rn,s2,min cm,max cm, apoc.coll.sort(apoc.coll.flatten(matches)) as matches, apoc.coll.sort(apoc.coll.flatten(rns)) as rns, edgect,unidir ct m,unidir ct p return s2.chr as chr,s2.strt pos as start pos,s2.end pos as end pos,apoc.math.round(min cm,1) as cm,edgect,unidir ct p,unidir ct m,size(rns) as kits,size(matches) as match ct,anc rn,rns,matches

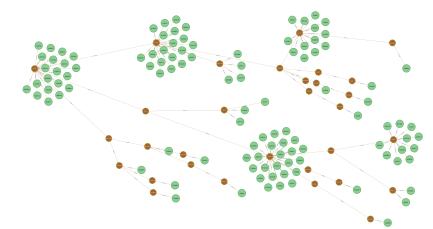
matches_by_segments_anc_desc()

Why Graph Methods?

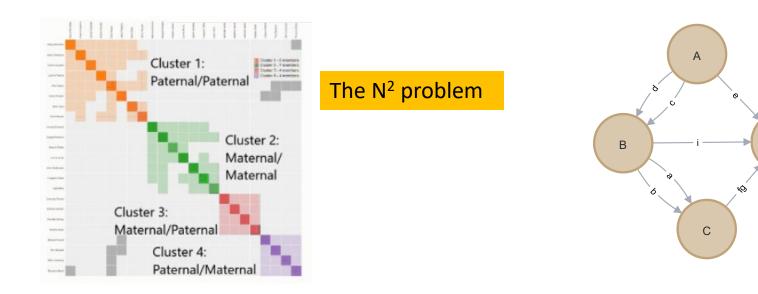
- Queries are intuitive
- Big data is manageable
- Little change in performance as data added
- Graph traversals outperform iterations
- Enhancements create knowledge
- Knowledge graphs enable discovery

Thinking in Graphs

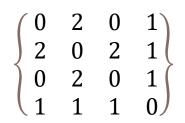
match path=(p:Person{RN:1})-[r:father|mother*0..3]->(a:Person) return path


Family Tree Functions

- Patrilineal trees
- Matrilineal trees
- X-inheritance trees
- Double cousins
- Relationships of all in the project
- X-genetic distance for all
- Pedigree completeness
- Correlation of relationship


.		
245 : 51 : 31		
Dusenberry, Rendick [3931] (1698-1743) M		
Dusenberry, John [3985] (1716-1789) M		
 Dusenberry, John [3303] (1710-1703) M Dusenberry, John [3823] (1755-1827) M 		
 Dusenberry, doinin [302:3] (1735-1027) Million Dusenberry, Henry [3821] (1795-1852) Million 		
□- Dusenberry, George [3817] (1828-1899) M		
Dusenberry, Dallas Brock (3260) (1857-1932) M		
Dusenbery, Verne Dallas [3258] (1885-1978) M		
Dusenbery, Earl Burton [3277] (1917-2013) /	4	
	4	
	5) M	
	<i>, </i>	
	м	
⊕ Deusenbeny, Henry E. [3825] (1852-1938) M		
Dusenberry, George Robert [3824] (1863-1942) M		
Deusenbery, Matthew Larkin [3832] (1864-1916) M		
Dusenberry, William Chambers [3826] (1853-1933) M		
Dusenberry, John [4027] (1825-1878) M		
Deusenberry, Henry [3842] (1826-) M		
- Dusenberry, Alexander [7094] (1824-) M		
Dusenberry, Daniel [4019] (1801-1866) M		
Dusenberry, Samuel [4016] (1786-1845) M		
 Dusenberry, Cornelius [4020] (1788-1827) M 		
— Dusenberry, Benjamin [4018] (1800-) M		
Dusenberry, John [4017] (1798-1826) M		
Dusenberry, George [4015] (1774-) M		
Dusenberry, Daniel [4014] (1769-1814) M		
Dusenberry, Sylvanus [4013] (1768-1826) M		
— Dusenberry, Henry [4011] (1760-1825) M		
Dusenberry, Samuel [4010] (1758-1829) M		
— Dusenberry, William [4009] (1757-1846) M		
Dusenberry, Benjamin [4008] (1753-1777) M		
 Dusenberry, Sylvanus [4007] (1720-1781) M 		
— Dusenberry, Samuel [4005] (1712-1757) M		
Dusenbury, John [26283] (1686-1772) M		
Dusenbery, John [26285] (1723-1811) M		
Dusenbury, Gabriel [26281] (1750-1813) M		
Dusenberry, William [26279] (1794-1853) M		
Dusenberry, Alonzo George [26277] (1844-1923) M		
Dusenberry, Charles Orla [26275] (1885-1949) M		
Dusenbery, Walter Alonzo [26273] (1915-1993)		
Dusenbery, Walter Condit [26272]	1939-) M	
Dusenberry, Benjamin [4004] (1695-1791) M		
Dusenberry, William [4001] (1694-1774) M		
Dusenberry, Henry [3998] (1681-1747) M		
Doesberg, Johannes [5365] (1666-1734) M		

Haplotrees


- FTDNA
 - Y-haplotree
 - Mt-haplotree
- Analytics
 - Inferred haplogroup => knowledge
 - Clade-mates
 - Dual matches: at- and either Y- or mt-matches
- Display
 - ORDPATH

Graphs as Adjacency Matrices ... when big data is overwhelming

DNA Matches = sparse matrix Great for limited set of close matches Quickly become non-computable Graph methods handle 250,000 matches Avoids a 62 trillion cell matrix! Performs well

D

Thinking in Graphs Avoid a common trap


- If you've worked with relational databases
 - Nodes ≅ tables
 - Relationships ≅ joins
 - Properties ≅ table fields
- Don't do this!
 - It's a simplification that is not robust
 - It diverts you from thinking differently
- Graphs have new first-class citizens
 - Relationships are more robust than joins
 - Path and List data types are not in relational systems
- Graphs are a unique ecosystem

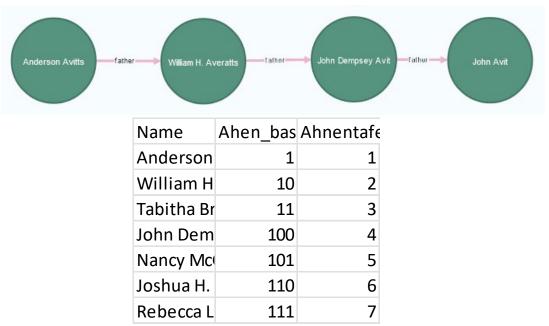
New Ways of Thinking

- Can I relate these two graphs?
- What properties should the relationship have?
- How do I speed up traversal queries?
- Can I create a new perspective? Union tree?
- What can I do with traversal collected data?
- How do I manage provenance of data?
- How do I leverage graph specific capabilities?
- How can I enhance the knowledge graph?

Think in Path Traversals

- Query uses an index to find start node(s)
- Traverses from start through relationships
- Several methods for collecting data as Lists

- Graphs have data types
 - Node
 - Relationship
 - Path
 - List


Each can have properties which can be indexed

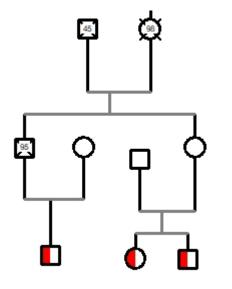
Ahnentafel from traversal data Collecting 1's and 0's

match path=(n:Person{RN:27})-[r:father|mother*0..2]->(x)
with x.fullname as Name,'1' + reduce(srt ='', q IN nodes(path)|srt + case when
q.sex='M' then '0' else '1' end) AS Anh

with Name, '1' + right(Anh,size(Anh)-2) as Ahnen

return Name, Ahnen as Ahen_base_2, gen.rel.ahnentafel(Ahnen) as Ahnentafe l order by Ahnentafel

Triple magic Adding record numbers and sex


Name	gen	sex_path	Ahnentafel	Dewey	ORDPATH
Martha Elizabeth Stinnett [32] (1843-1928)	0	F	1	[32]	1018
Samuel Lewis Stinnett [63] (1822-1864)	1	FM	2	[32,63]	101810127
Alpha Loggins [64] (1823-1906)	1	FF	3	[32,64]	101810128
Mary Elizabeth Nichols [101] (1785-1855)	2	FMF	5	[32,63,101]	1018101271100d
Samuel Loggins [102] (1776-1826)	2	FFM	6	[32,64,102]	1018101281100e
Martha Scott [103] (1795-1880)	2	FFF	7	[32,64,103]	1018101281100f
William Nichols [130] (1754-1850)	3	FMFM	10	[32,63,101,130]	1018101271100d11002a
Nancy Blankenship [131] (1765-1850)	3	FMFF	11	[32,63,101,131]	1018101271100d11002b

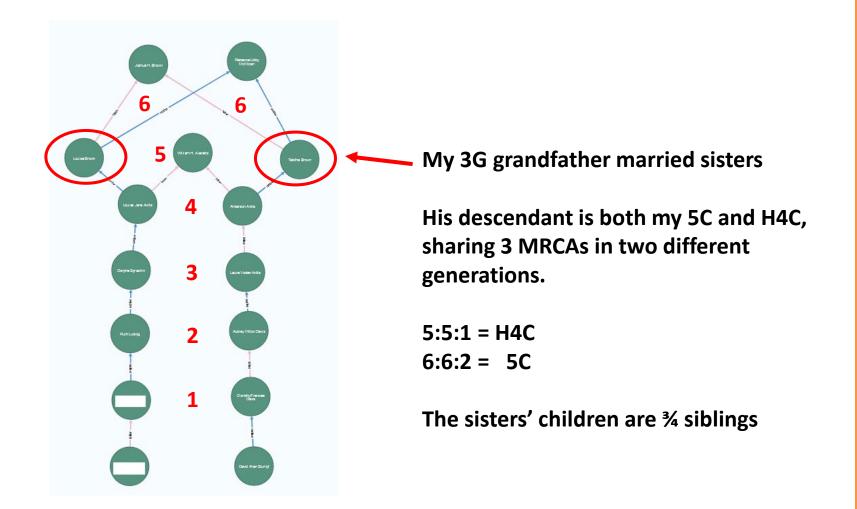
- X-chromosome ancestors of Martha Elizabeth Stinnett
- Sex path excludes male to male inheritance
- Dewey is an aggregation of record numbers of persons in he path
- ORDPATH a hexadecimal number created from the Dewey by a UDF
- Notice that sorting on the Dewey will not order the list properly
- Sorting on ORDPATH provides a proper sort
- SQL Server hierarchyld datatype is an ORDPATH string

O'Neil, P. et al. ORDPATHs: insert-friendly XML node labels. in *Proceedings* of the 2004 ACM SIGMOD international conference on Management of data 903–908 (Association for Computing Machinery, 2004). https://www.cs.umb.edu/~poneil/ordpath.pdf

Common ancestors ... bread and butter graph task

match (p1:Person{RN:1})-[r1:father|mother*0..15]->mrca:Person(<-)r2:father|mother*0..15]-(p2:Person{RN:600}) return collect(mrca.fullname) as mrca

- Pictured pedigree: Query returns grandparents
- Two paths converge on MRCA(s)
- Three variables define a relationship
 - Path length 1
 - Path length 2
 - MRCA count
- Represent as concatenated string
 - Pictured 2:2:2 = 1C
 - 2:2:1 = H1C
 - 4:5:1 = H3C1R
- fam_rel node set also includes
 Shared Centimorgan Project data


Node Properties 🗈

fam_rel

<id></id>	52093
HighSharedCM	1225
Indx	2:2:2
LowSharedCM	553
MeanSharedCM	874
nmrca	2
path1	2
path2	2
relationship	1C

There are many GFG functions for common ancestors

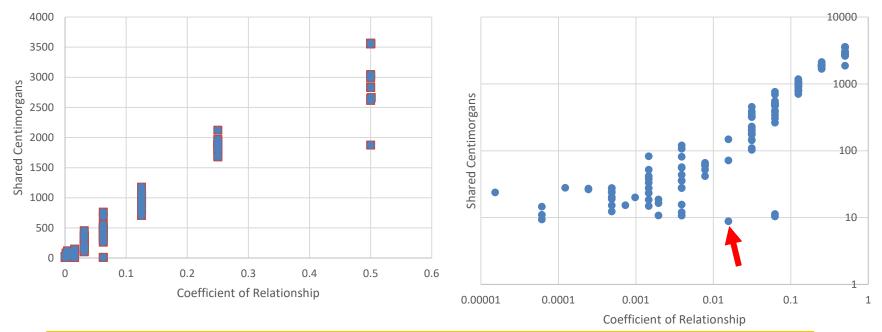
Easier to see in a graph

Correlation of Relationship ... a number with added value

- Single value
- Detailed view
 - Count hops on each path and do the math
 - Estimate or look up the expected shared cM

propositi	relationship	ancestors		path1	path2	genetic distance	COR
David Allen Stumpf 1 (1945-) ; anonymized 26429 (-)	H5C	Rebecca Libby McMican 4607 (1790-1863)		6		12	.0002441
David Allen Stumpf 1 (1945-); anonymized 26429 (-)	H5C	Joshua H. Brown 4441 (1780-1840)		6	6	12	.0002441
David Allen Stumpf 1 (1945-); anonymized 26429 (-)	H4C	William H. Averatts	53 (1813-2022)	5	5	10	.0009766
The total COR is 0.00146484375 From the shared centimorgan project the expected value and ra	inge is unknown	cm	5c				
The observed shared DNA is 82.9.			0	_			
The predicted DNA is 0.00146484375 x 6000 = 8.7890625 cm		•	25				
			0 - 117				
UDF:			· ···/				
return gen.rel.shared_DNA(1,26429)							-
The coefficient of relationship (COR) is a measure of pedigree c	ollapse resulting	from ancstors appea	ring more that one in the f	amily tr	ee.		-
The paths are the generations to the common ancestor for each	n person in the a	nalysis.					
references:							
https://www.yourdnaguide.com/ydgblog/2019/7/26/pedigree-coll	apse-and-geneti	c-relationships					
http://www.genetic-genealogy.co.uk/Toc115570135.html							Ť
https://isogg.org/wiki/Coefficient_of_relationship						Such with land	
database: avitts							

COR, if available, can be a better filter than relationship or centimorgans.

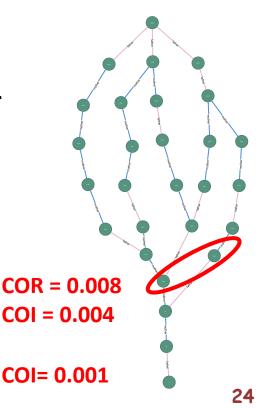

What's going on?

The illusion of linearity is exposed in a log-log plot

Is segregation really random? Are there outliers?

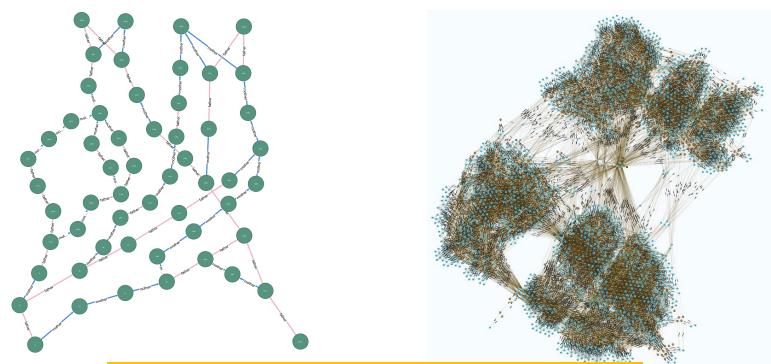
Sticky segments? Selection bias? Something else?

COR Predicts Actual Shared cM?



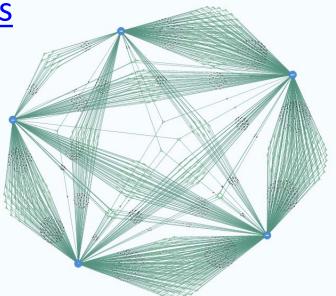
Mother Nature and "Thinking in Graphs" offer some possible explanations.

COR Predicts Actual Shared cM?


Pedigree Collapse

- Duplicate ancestors
- Multiple positions in a standard pedigree chart
- Multiple paths
- Coefficient of inbreeding
 - Most recent endogamous ancestor
 - COR of MREA halved for each descendant generation

Graph Topology Paths in Endogamy


- Paths are first-class citizens in a graph database
- GFG creates path nodes and relationship to them
- Path have intersections
- GFG creates intersect nodes and path-intersect relationships

https://www.wai.md/blog/categories/endogamy

Getting Started

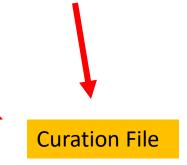
- Explore the GFG Blog
- Join the <u>FB GFG Forum</u>
- Wes Johnston's <u>Guide to Getting Started with GFG</u>
- Download <u>GFG Software</u>
- Install <u>Neo4j Software</u>
- Mentoring at <u>Professor's Rounds</u>

Neo4j

- "Native" Graph Database
- Industry leader
- Open Source
- Free versions
- PlugIn functions and procedures
 - From Neo4j:
 - <u>APOC</u>: awesome procedures on cypher
 - <u>GDS</u>: graph and machine learning algorithms
 - GFG capitalizes on these, adding ~200 functions

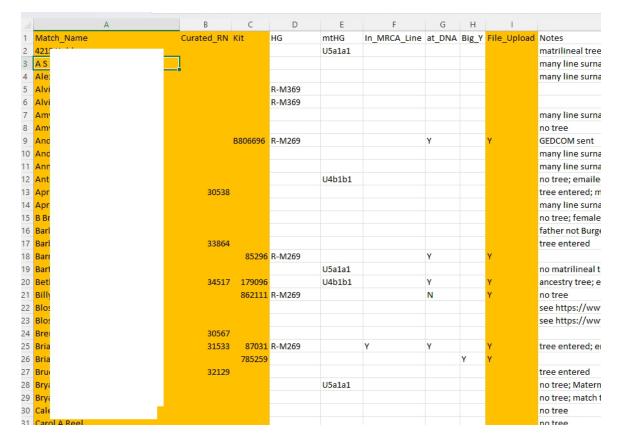
The GFG Neo4j PlugIn ~200 functions

- Loads GEDCOM and FTDNA data files
- Uses curated files to link graphs
- Loads reference data
- Generates reports
- Uses Neo4j PlugIns
- Memorializes analytics => knowledge graph
- Optimized schema => perhaps a standard?
- Incremental learning for users

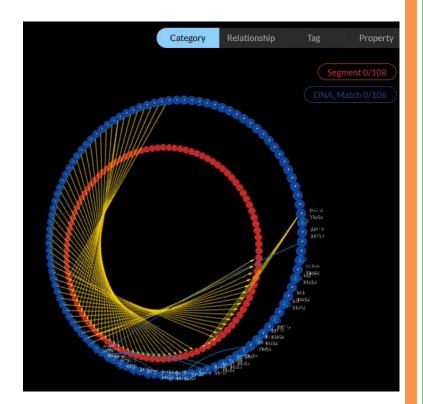


Curation by the Genealogist Linking the family tree to the DNA

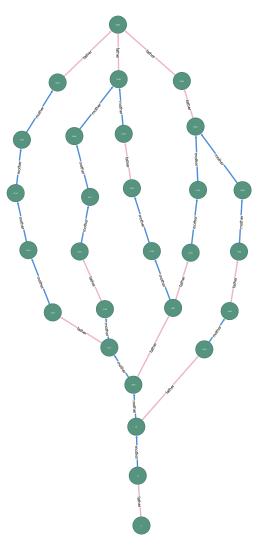
	\frown		
15	0.0I10.INDIIE		
16	L NAME David Allen/St	tumpf/ LF	
17	1 REFN 1	1	
18	1 SEX MLF		
19	1 BIRT IF		
20	2 · DATE · · 8 · May · 1945		
21	2. PLAC. Los. Angeles, . (Californi	laLF
22	1 · DEAT · LE		
23	2 · DATE · LE		
24	1 · FAMC · @F308@ LF	340657	0.@F42@.FAMLE
25	1 FAMS @F306@LF	340658	1.WIFE.@I17145@LE
26	1 · FAMS · @F307@LF	340659	0.0F430.FAM
27	0.@I2@.INDI	340660	1.WIFE.@I17147@IF
28	I NAME Herman Allen/S	340661	0.0F440.FAMIE
29	1 · REFN · 2LE	340662	1.WIFE 011714801F
30	1 SEX MLE	340663	0.0F450 FAMLE
31	1.BIRT. LE	340664	1 WIFE @I17154@LF
32	2 DATE 7 Dec 1916		0.0F460 FAM
33	2. PLAC Detroit, Mich	340666	1 WIFE @117304@LF
34	1 DEAT	240667	1 CHIL @117306@LF
35	2 DATE 27 Nov 1990	340668	1 CHIL @117307@
36	2. PLAC South Laguna,	340669	0.@F47@.FAM
37	1 · FAMC · @F309@ LF	340670	1.WIFE.0I173110
38	1 · FAMS · @F308@LF	340670	1. CHIL @1173130
		340671	1. CHIL. @I214260
		240012	T.CUID.GISI4206


> Genealogy > DNA > wai_dna > David Stumpf

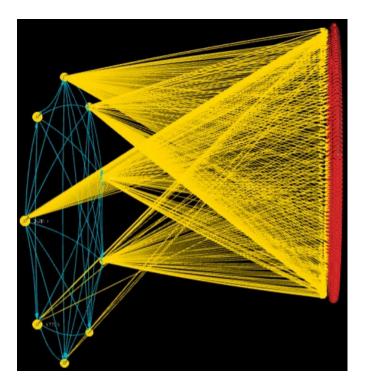
~		Τ.
Name	Size	
B51965_Chromosome_Browser_Results_20211221.csv	339 KB	
💿 B51965_detailed_segments_data.csv	4 KB	
B51965_Family_Finder_Matches_2021-12-21.csv	1,620 KB	
B51965_mtDNA_Matches_20220122.csv	63 KB	
B51965_Y_DNA_Matches_2021-12-21.csv	1 KB	
🔯 B51965_z_advanced-matching_20220214.csv	368 KB	ì
B51965-FASTA.fasta	17 KB	2


GEDCOM-DNA curation file linkages plus research nodes

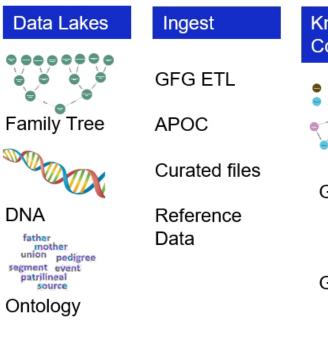
- Links your GEDCOM to the FTDNA kit
- Match name is from the file in which the person is a match
- Curated_RN is the GEDCOM number: 0 @15678@ INDI

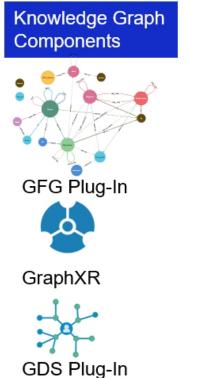

Example Project My Avitts/Brown line

- Persons: 34,601
- Unions: 12,527
- Kits: 54
- DNA_Matches: 251,553
- Segments: 434,025
- Avatars: 41
- Family paths: 406


French-Canadian Project ... with Michelle Bray Wilson

- Persons: 2,822
- Unions: 1,369
- Kits: 12
- DNA Matches: 27,476
- Segments: 47.776
- Avatars: 0
- Family paths: 1,797 with 2,337 intersections




Mennonite Project

- Persons: 1,503,531
- Unions: 482,742
- Kits: 1 (test sample)
- DNA Matches: 921
- Segments: 3403
- Family paths: 21,764,710

Workflow

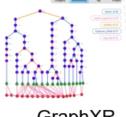
Use Cases

Family Trees

Pedigree analytics

DNA Match Communities

Triangulations

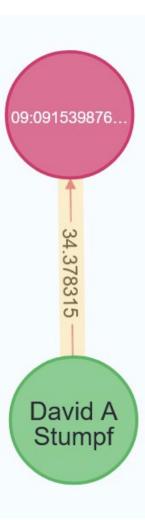

FAN Groups

Actionable Insights

Visualizations

DNA Painter

GraphXR

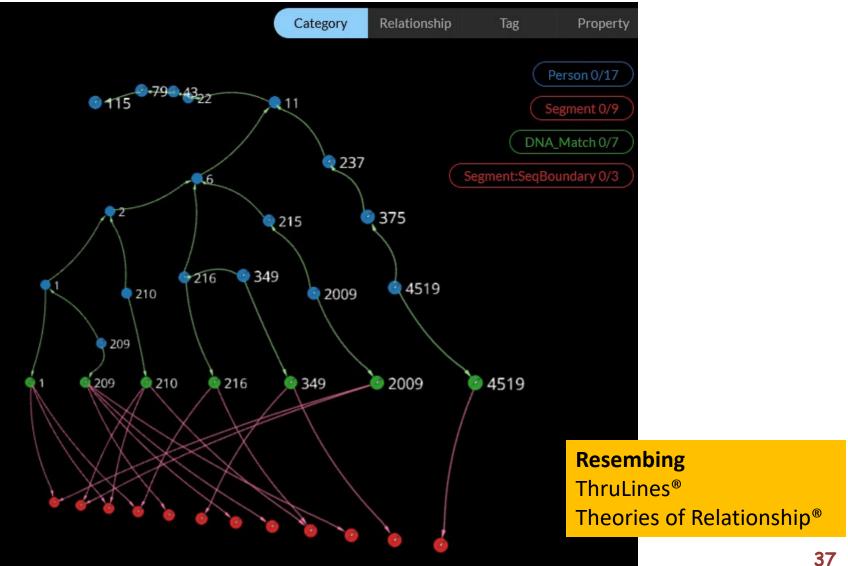

Knowledge Graph

- Turning facts into actionable insights
- Analytic results memorialized in the graph
- Iterative process: knowledge builds more
- One-time effort => any time benefit
- "Cost" is more storage space
- Benefit is faster, better queries

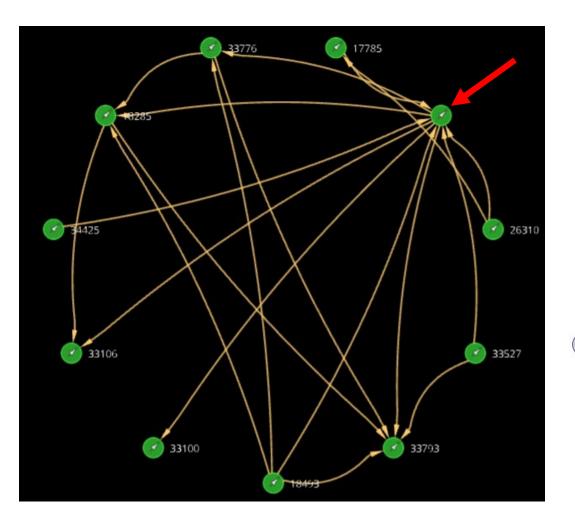
Advanced analytics require an optimized knowledge graph!

Key Knowledge

Provenance of data Match-Pair names & RN Their relationship Their COR Genetic distance Parental side for both MRCAs cM SNP count



Relationship properties D


match_segment

<id></id>	1162099
cb_version	new
cm	34.378315
cor	0.125
gen_dist	4
m	David A Stumpf
m_anc_rn	4441
m_rn	1
m_side	maternal
mrca_rn	7, 8
p	PD
p_anc_rn	4441
p_rn	343
p_side	paternal
pair_mrca	Aubrey Milton Davis [7] (1892-1976), Frances Emma Green [8] (1893-1972)
rel	1C
snp_ct	7465

at-haplotree ...family tree \rightarrow matches \rightarrow segments

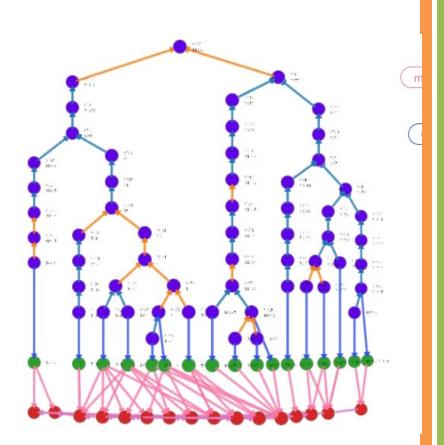
Cluster match circle ... DNA_Match nodes linked by match_by_segment

All but one match has a record number.

The unknown match (red arrow) has many relationships, providing a motive for additional research.

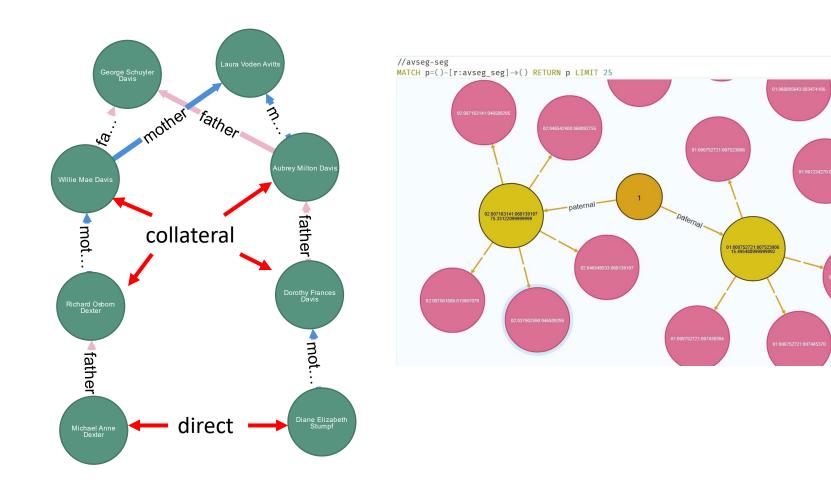
21	SHARED OR BOTH	Show match names
	PATERNAL	

Field of Dreams: Avatars ... *in silico* reconstruction of ancestors

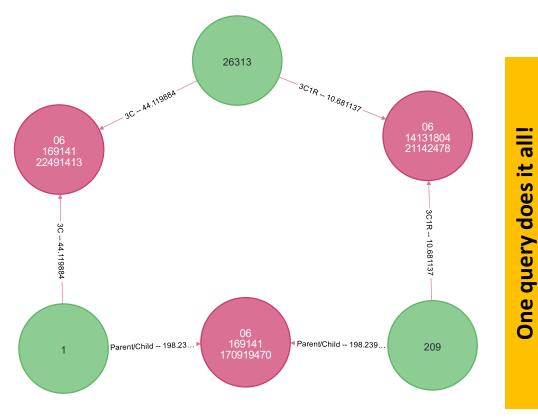

- Your ancestor emerges from the corn field
- DNA available for your research
- Quick and easy in a graph database

https://www.wai.md/post/the-field-of-dreams-ancestor-avatars

Knowledge Graph ... enables amazing advanced analytics


- 091539870. 44 15097978 450779778 450777778 450777778 4507777777777777777
- match_segment relationships
 - GFG adds knowledge
 - parental origin of segment
 - Relationship between match-pair
 - MRCAs

Avatar creation is enabled by the knowledge.


Assigning segments with parental side

match path=(p1:Person{RN:210})-[r1:father|mother*0..6] >(mrca:Person)<-[r2:father|mother*0..6]-(p2:Person{RN:582}) return path

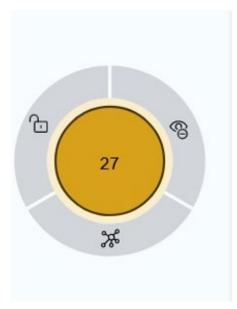
Inferred Segments Assigning a grandparent's segment

Inferred segments when segments overlap

Find base and close relation using cor ≥0.25

Find compare relative who matches base and close $cor \ge >0.00125$

Identify segments shared with compare relative and compute flanking regions that are not shared.


Assign the flanking regions to the grandparent who is NOT in the shared family line.

https://familytreewebinars.com/webinar/inferred-mapping-explained/

Anderson Avitts (1843-1877)

• Details at blog post

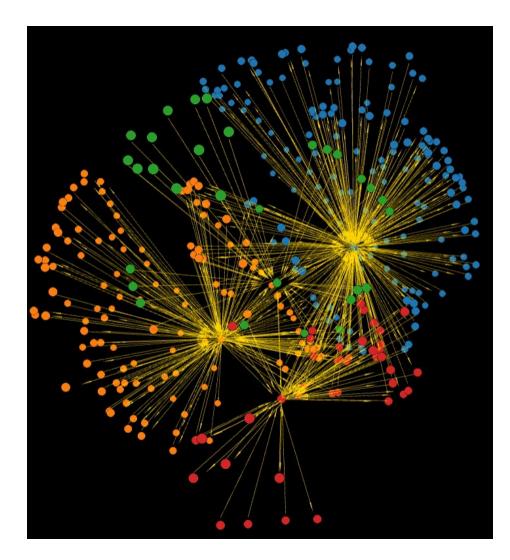
https://www.wai.md/post/the-field-of-dreams-ancestor-avatars

Node Properties D

Avatar

<id></id>	1159404
RN	27
dna_coverage	0.0553478301388889
fullname	Anderson Avitts
maternal_cm	21.3222499999999993
paternal_cm	377.1821270000004
total_cm	398.5043770000001

A. Avitte

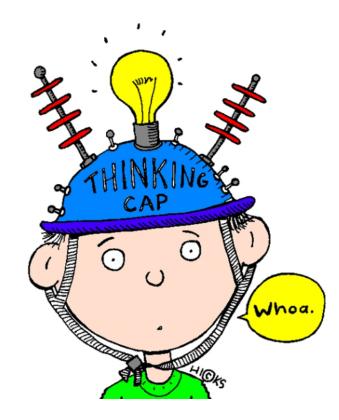

The Field of Dreams What your ancestor and relative avatars tll you

- Avatars have family trees
- Avatar match their descendants
- Avatars define crisp triangulation groups
- Avatars match a few not in the family tree ... yet
- Avatars illuminate autosomal haplotrees
 - Avatar segments are linked to their source
 - Descendants know the ancestral origin of segments
 - Segment "checkerboard" enhances analytic specificity
- Relative avatars segments: help place new matches?
- Inferred segments help with tangential line research

avSegmen

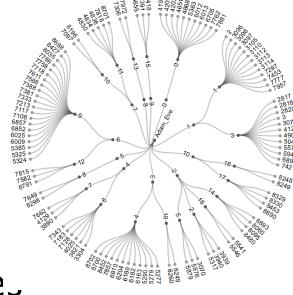
nerson avata

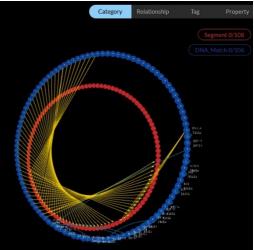
Graph Algorithms


GFG uses Neo4j Graph Data Science Plug-In and its community detection algorithms Louvain Modularity optimization Page Propagation

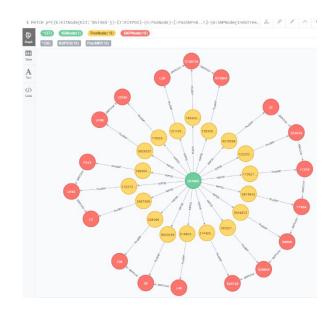
Community members align with family tree branches.

Community segments identified.


GFG queues up query for ... DNA Painter GraphXR (3D renderings)


What's Next

Many Opportunities


- Machine Learning
- Y-DNA analytics
- mt-DNA analytics
- FAN groups
- Spatial analytics
- Automated 3rd party interface.
- 3-D renderings
- Virtual reality
- Forensic graphs
- Evidence graphs

Knowledge Graph Enhancements ... driven by user engagement

- Avatars on many family lines
- mt-haplotree enhancements
- Improved surname linkages
- FAN Groups capabilities
- Other vendor DNA results

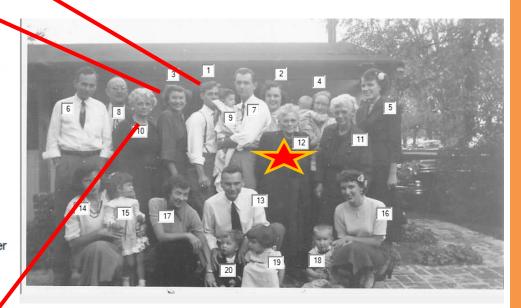
Ancestral surname reports ... 3 worksheets

- Matches with the surnames
 - Match
 - Source kit
 - Shared cm and segment count
- In-common-with matches
 - Match
 - Cluster of icw matches
 - MRCAs of the cluster of matches, if identifiable
- Shared segments
 - Matches at segments (usually a short list)

CALVERT,KENT CALVERT,KENT,STINNETT CALVERT,KENT,STINNETT CALVERT,KENT KENT,STINNETT

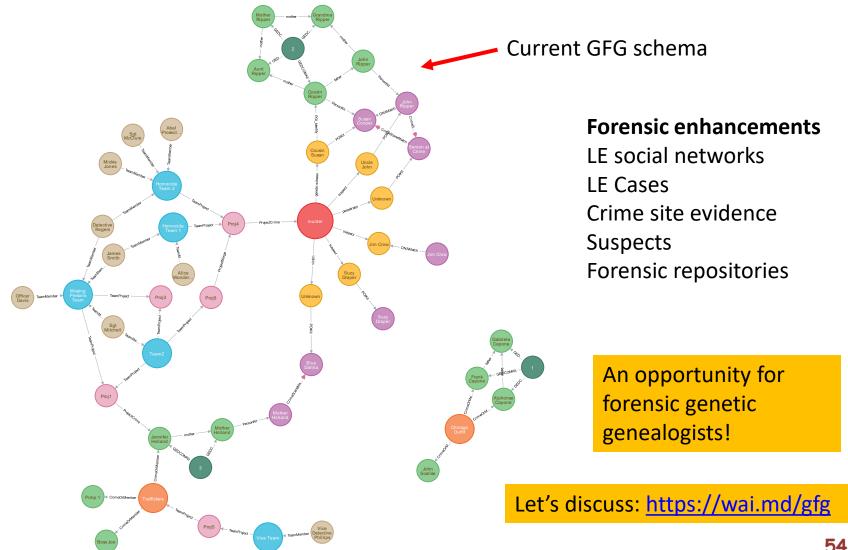
FAN Groups from 1850 Census

"Four generations of uncles" Sabanno, Eastland Co., Texas about 1917

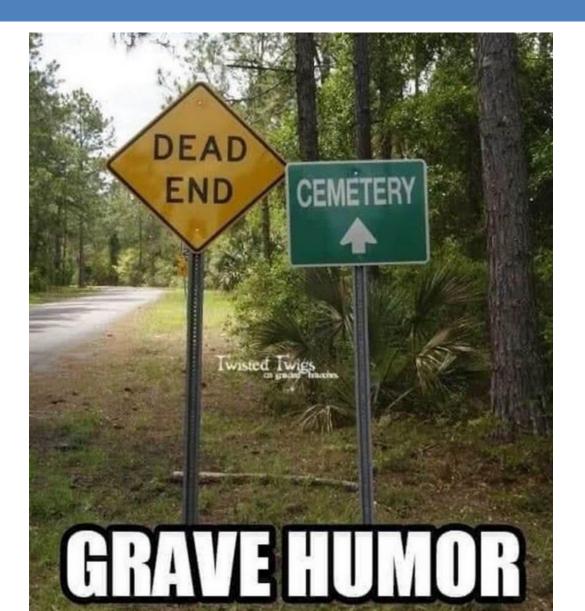

- 1. Stinnett, Samuel Henry [679] (1854-1928) M
- 2. Erwin, James Samuel [283] (1861-1949) M
- 3. Green, Chester Erwin [243] (1889-1949) M
- 4. Green, William Alvord [422] (1916-2008) M

FAN Group from Multiple Sources

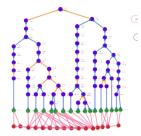
Smith, Joseph [26427] (1919-) M :Img father: Smith, William Franklin [22775] (1890-1956) M wife: Davis, Willie Mae [240] (1889-1967) mother: Avitts, Laura Voden [14] (1868-1966) - Sorenson, Marie [26428] (1924-) Ft ag husband: Smith, Joseph [26427] (1915). M father: Smith, William Franklin [22779] (1890-1956) M wife: Davis, Willie Mae [240] (1889-1967) F mother: Avitts, Laura Voden [14] (1868-1966) F Avitts, Anderson [27] (1843-1877) M :Cen - father Burklow, Carolyn Rebecca [28] (1844-1873) F :Cen - mother Avitts, William Henry [270] (1866-1944) M :Cen - brother -father: Avitts, Anderson [27] (1843-1877) M daughter: Avitts, Laura Voden [14] (1868-1966) F Cain, Margaret Penecia [200] (1840-1907) F :Cen - 36 husband: Avitts, Anderson [27] (1843-1877) M --- daughter: Avitts, Laura Voden [14] (1868-1966) F Avitts, Luther Smith [272] (1870-1888) M :Cen - brother --- father: Avitts, Anderson [27] (1843-1877) M ----- daughter: Avitts, Laura Voden [14] (1868-1966) F Avitts, Arthur Anderson [432] (1875-1943) M :Cen - half brother — father: Avitts, Anderson [27] (1843-1877) M --- daughter: Avitts, Laura Voden [14] (1868-1966) F Davis, Aubrey Milton [7] (1892-1976) M :Cen - son Davis, George Schuyler [13] (1869-1910) M :Cen - husband Davis, Willie Mae [240] (1889-1967) F :Cen - daughter - Davis, Lessie Wenonah [242] (1890-1988) F :Cen - daughter --- Davis, Rosalie [244] (1896-1972) F :Cen - daughter --- Davis, Patsy Ola [245] (1899-1963) F :Cen - daughter ··· Nybye, Julius Oscar [191] (1861-1942) M :Cen - husband



Capture and preserve the knowledge


Painted segments ... UDFs generate query for DNA Painter

Forensic Genealogy ... violent crimes, missing persons, abandoned bodies, etc.


A Good Place to End

55

David A Stumpf, MD, PhD <u>dave@wai.md</u> <u>https://wai.md/gfg</u> https://facebook.com/groups/gfgforum

GRAPHS FOR Genealogists

